Abstract

Hybrid microgrids that use renewable energy sources can improve energy security and islanding time while reducing costs. One potential beneficiary of these systems is the U.S. military, which can seek to improve energy security when operating in isolated areas by using a microgrid rather than relying on a fragile (or nonexistent) commercial network. Renewable energy sources can be intermittent and unpredictable, making it difficult to plan operations of a microgrid. We describe a scenario-robust mixed-integer linear program designed to utilize ensemble weather forecasts to improve the performance of a hybrid microgrid containing both renewable and traditional power sources. We exercise our model to quantify the benefit of using ensemble weather forecasts, and we predict the optimal performance of a hypothetical grid containing wind turbines by using simulated realistic weather forecast scenarios based on data. Because forecast quality degrades with lead time, we perform a sensitivity analysis to determine which planning horizon results in the best performance. Our results show that, for day-ahead planning, longer planning horizons outperform shorter planning horizons in terms of cost of operations, but this improvement diminishes as the planning horizon lengthens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.