Abstract
We propose a robust optimal 27-point finite difference scheme for the Helmholtz equation in three-dimensional domain. In each direction, a special central difference scheme with 27 grid points is developed to approximate the second derivative operator. The 27 grid points are divided into four groups, and each group is involved in the difference scheme by the manner of weighted combination. As for the approximation of the zeroth-order term, we use the weighted average of all the 27 points, which are also divided into four groups. Finally, we obtain the optimal weights by minimizing the numerical dispersion with the least-square method. In comparison with the rotated difference scheme based on a staggered-grid method, the new scheme is simpler, more practical, and much more robust. It works efficiently even if the step sizes along different directions are not equal. However, rotated scheme fails in this situation. We also present the convergence analysis and dispersion analysis. Numerical examples demonstrate the effectiveness of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.