Abstract

In this paper, a numerical study on skin–stringer debonding growth in stiffened composite panels has been carried out. A novel numerical methodology is proposed here to investigate the compressive behaviour of a stiffened composite panel in the presence of skin–stringer partial separation. The novel numerical methodology, able to overcome the mesh size and time increment dependency of the standard Virtual Crack Closure Technique (VCCT), is an evolution of a previously developed and tested numerical approach for the circular delaminations growth. The enhancements, with respect to the previously developed approach, rely mainly in the capability to deal with the different defect shapes characterising a skin–stringer debonding. The proposed novel methodology has been implemented in a commercial finite element platform and tested over single stiffener composite panels. The effectiveness of the suggested numerical methodology, in predicting the compressive behaviour of stiffened panels with skin stringer debondings, has been preliminary confirmed by comparisons, in terms of load versus applied displacement and debonding size at failure, with literature experimental data and numerical results obtained with the standard VCCT approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.