Abstract

Advances in scanning probe microscopy (SPM) methods such as time-resolved electrostatic force microscopy (trEFM) now permit the mapping of fast local dynamic processes with high resolution in both space and time, but such methods can be time-consuming to analyze and calibrate. Here, we design and train a regression neural network (NN) that accelerates and simplifies the extraction of local dynamics from SPM data directly in a cantilever-independent manner, allowing the network to process data taken with different cantilevers. We validate the NN's ability to recover local dynamics with a fidelity equal to or surpassing conventional, more time-consuming, calibrations using both simulated and real microscopy data. We apply this method to extract accurate photoinduced carrier dynamics on n = 1 butylammonium lead iodide, a halide perovskite semiconductor film that is of interest for applications in both solar photovoltaics and quantum light sources. Finally, we use SHapley Additive exPlanations to evaluate the robustness of the trained model, confirm its cantilever-independence, and explore which parts of the trEFM signal are important to the network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.