Abstract
Background and objectiveElectrode shift is always one of the critical factors to compromise the performance of myoelectric pattern recognition (MPR) based on surface electromyogram (SEMG). However, current studies focused on the global features of SEMG signals to mitigate this issue but it is just an oversimplified description of the human movements without incorporating microscopic neural drive information. The objective of this work is to develop a novel method for calibrating the electrode array shifts toward achieving robust MPR, leveraging individual motor unit (MU) activities obtained through advanced SEMG decomposition. MethodsAll of the MUs from decomposition of SEMG data recorded at the original electrode array position were first initialized to train a neural network for pattern recognition. A part of decomposed MUs could be tracked and paired with MUs obtained at the original position based on spatial distribution of their MUAP waveforms, so as to determine the shift vector (describing both the orientation and distance of the shift) implicated consistently by these multiple MU pairs. Given the known shift vector, the features of the after-shift decomposed MUs were corrected accordingly and then fed into the network to finalize the MPR task. The performance of the proposed method was evaluated with data recorded by a 16 × 8 electrode array placed over the finger extensor muscles of 8 subjects performing 10 finger movement patterns. ResultsThe proposed method achieved a shift detection accuracy of 100 % and a pattern recognition accuracy approximating to 100 %, significantly outperforming the conventional methods with lower shift detection accuracies and lower pattern recognition accuracies (p < 0.05). ConclusionsOur method demonstrated the feasibility of using decomposed MUAP waveforms’ spatial distributions to calibrate electrode shift. This study provides a new tool to enhance the robustness of myoelectric control systems via microscopic neural drive information at an individual MU level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.