Abstract
Skew-normal/independent distributions are a class of asymmetric thick-tailed distributions that include the skew-normal distribution as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in multivariate measurement errors models. We propose the use of skew-normal/independent distributions to model the unobserved value of the covariates (latent variable) and symmetric normal/independent distributions for the random errors term, providing an appealing robust alternative to the usual symmetric process in multivariate measurement errors models. Among the distributions that belong to this class of distributions, we examine univariate and multivariate versions of the skew-normal, skew- t , skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.