Abstract
We describe a robust method for the recovery of the depth map (or height map) from a gradient map (or normal map) of a scene, such as would be obtained by photometric stereo or interferometry. Our method allows for uncertain or missing samples, which are often present in experimentally measured gradient maps, and also for sharp discontinuities in the scene’s depth, e.g. along object silhouette edges. By using a multi-scale approach, our integration algorithm achieves linear time and memory costs. A key feature of our method is the allowance for a given weight map that flags unreliable or missing gradient samples. We also describe several integration methods from the literature that are commonly used for this task. Based on theoretical analysis and tests with various synthetic and measured gradient maps, we argue that our algorithm is as accurate as the best existing methods, handling incomplete data and discontinuities, and is more efficient in time and memory usage, especially for large gradient maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.