Abstract

The stochastic nature of renewable energy resources and consumption has the potential to threaten the balance between generation and consumption as well as to cause instability in power systems. The microgrid operators (MGOs) are financially responsible for compensating for the imbalance of power within their portfolio. The imbalance of power can be supplied by rescheduling flexible resources or participating in the balancing market. This paper presents a robust optimization (RO)-based model to maintain the balance of a portfolio according to uncertainties in renewable power generation and consumption. Furthermore, load reduction (LR) and battery energy storage (BES) are considered flexible resources of the MGO on the consumption side. The model is formulated based on the minimax decision rule that determines the minimum cost of balancing based on the worst-case realizations of uncertain parameters. Through the strong duality theory and big-M theory, the proposed minimax model is transformed into a single-level linear maximization problem. The proposed model is tested on a six-node microgrid test system. The main contributions of the proposed model are presenting a robust model for portfolio management of MGO and using BES and LR to improve the flexibility of microgrid. Simulation results demonstrate that using LR and BES could decrease the balancing cost. However, the optimal portfolio management to compensate for the imbalance of power is highly dependent on the risk preferences of MGO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.