Abstract
The Feed-Forward and Backpropagation Artificial Neural Networks (FFBP-ANN) are generally employed for cut surfaces quality characteristics predictions. However, the determination of the neurons on the hidden layer and the training parameters’ values are tasks requiring many trials according to the Full-Factorial Approach (FFA). Therefore, in this work, a methodology is presented for the optimization of an FFBP-NN and the application of the Taguchi Design of Experiments (TDE). Nine combinations of four variables were examined, having three levels each, according to the L9 (34) orthogonal array. The number of neurons in the hidden layer (N), the learning rate (mu), the increment factor (mu+) and the decrement factor (mu-) are employed as variables. In addition, Mean Squared Error (MSE) and overall regression index (Rall) was decided as the objective functions. Thus, TDE diminishes the FFBP-ANN arrangements to nine from eighty-one of FFA. The optimized FFBP-ANN predicts the surface roughness in various cut depths during laser cutting of thin thermoplastic plates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.