Abstract
The electrochemical behaviour of direct methanol fuel cells (DMFCs) is sensitive to methanol concentration; thus, to avoid external sensors, it is a promising candidate to monitor the concentration of methanol in the fuel circulation loop, which is central to the efficient operation of direct methanol fuel cell systems. We address this issue and report on an extremely robust electrochemical methanol sensing technique that is not sensitive to temperature, cell degradation and membrane electrode assembly (MEA) type. We develop a temperature independent empirical correlation of the dynamic response of cell voltage to step changes in current with methanol concentration. This equation is successfully validated under various operating scenarios at both the single cell and stack levels. Our sensing method achieves an impressive accuracy of ±0.1 M and this is expected to increase the reliability of methanol sensing and simplify the control logic of DMFC systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.