Abstract
Alzheimer’s disease (AD), a progressive dementia is the neurodegenerative disorder that worsens memory and mental capabilities mostly in aged people. Currently, clinical and psychometric assessments are being used to diagnose the disease in patients. In clinical procedures, 3D Magnetic Resonance Image qualitative parameters are analyzed to identify the abnormality in brain shape, volume, texture, and cortical thickness. This paper presents a robust approach for categorizing 3D MR images into multiple stages of AD using hybrid features viz., Gray Level Co-occurrence Matrix (GLCM), 3D Scale and rotation Invariant Feature Transform (3D SIFT), Histogram of Oriented Gradients – Three Orthogonal Planes (HOG-TOP) and Complete Local Binary Pattern of Sign and Magnitude – Three Orthogonal Planes (CLBPSM-TOP). The proposed algorithm is validated using Open Access Series of Imaging Studies (OASIS) datasets to classify the subjects into AD, Mild Cognitive Impairment (MCI) and Cognitive Normal (CN) categories using various classifiers. Moreover, this approach is also evaluated and compared with the state-of-the-art approaches. 87.84% diagnosis accuracy is achieved with Ensemble classifier using hybrid features to diagnose the severity of AD. This approach also outperforms majority of these techniques in key parameters viz., accuracy, precision, recall and F1-score.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.