Abstract
Precise control over dimension of nanocrystals is critical to tune the properties for various applications. However, the traditional control through experimental optimization is slow, tedious and time consuming. Herein a robust deep neural network-based regression algorithm has been developed for precise prediction of length, width, and aspect ratios of semiconductor nanorods (NRs). Given there is limited experimental data available (28 samples), a Synthetic Minority Oversampling Technique for regression (SMOTE-REG) is employed first for data generation. Deep neural network is further applied to develop regression model which demonstrated the well performed prediction on both the original and generated data with a similar distribution. The prediction model is further validated with additional experimental data, showing accurate prediction results. Additionally, Local Interpretable Model-Agnostic Explanations (LIME) is used to interpret the weight for each sample, corresponding to its importance towards the target dimension, which is well validated by experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.