Abstract

This paper describes the development of a robust longitudinal controller for autonomous ground vehicle with inherent unknown nonlinearities and parametric uncertainties. The longitudinal controller is designed using Sliding-Mode Control (SMC) strategy based on fuzzy logic, which works through switching between the throttle actuator and brake actuator according to a predetermined criterion. The proposed longitudinal controller not only eliminates the chattering phenomenon in the Sliding-Mode Control (SMC) but also copes with the system uncertainties and external disturbances. Additionally, the convergence of closed-loop longitudinal control system is proved by the Lyapunov stability theory. Finally, simulation and experimental results indicate the strong robustness and commendable tracking performance of proposed controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.