Abstract

ObjectiveTo establish and validate a robust LC-MS/MS method for simultaneously measuring 8-oxoGuo, 8-oxodG, and NMN in serum and urine to evaluate the oxidative stress status. MethodsA Waters TQ-XS triple quadrupole mass spectrometer system coupled with an Acquity UPLC Primer HSS T3 column was chosen. The clinical performance was verified according to the CLSI C62-A and EP-15 guidelines. Furthermore, matched serum and urine samples from 22 apparently healthy check-ups, 20 patients with atherosclerosis, and 18 individuals with dementia were evaluated. ResultsThe recovery for serum 8-oxoGuo, urine 8-oxoGuo, serum 8-oxodG, urine 8-oxodG, serum NMN, and urine NMN was 88.8–112.4%, 102.4–114.1%, 88.5–107.7%, 94.9–102.6%, 98.4–108.9%, and 88.5–108.6%, respectively. Based on the inter-assay results, total coefficient of variation, matrix effect, and carryover, the LC-MS/MS method was deemed robust. The limit of quantification was 0.017, 0.018, and 0.150 nmol/L for 8-oxoGuo, 8-oxodG, and NMN, respectively, which are suitable for accurate measurements in human serum and urine samples. Higher 8-oxoGuo and 8-oxodG levels and lower NMN levels, indicative of significantly higher oxidative stress status, were found in patients with dementia compared to healthy subjects. ConclusionWe established and validated a robust LC-MS/MS method to simultaneously measure 8-oxoGuo, 8-oxodG, and NMN in serum and urine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.