Abstract
This paper introduces a novel lateral guidance strategy for autonomous ground vehicles operating in deformable environments. The strategy combines a geometric algorithm with a dynamic controller to leverage the advantages of both methods. The geometric algorithm is based on a modified Pure Pursuit method, which calculates the lateral error by considering a dynamic parameter associated with the look-ahead distance. The controller takes model uncertainties and time-variant parameters into account in a grid-based LPV (Linear Parameter Varying) synthesis. To validate the proposed control architecture, a dedicated off-road vehicle simulator that accounted for deformable soils was used. The effectiveness and robustness of the proposed lateral guidance strategy were demonstrated by integrating and validating the control architecture on a vehicle prototype. The results indicate that the proposed approach effectively handled complex and uncertain deformable environments. Overall, this study presents a new lateral guidance strategy that enhances the performance and reliability of autonomous ground vehicles in challenging environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.