Abstract

This paper presents an improved Model Predictive Control (MPC) for path tracking of a nonholonomic mobile robot with a differential drive. Nonlinear dynamics and nonholonomic constraints make the optimisation problem of MPC for the robot challenging. Nonlinear dynamics of the robots are expressed by a Linear Parameter Varying (LPV), and a Recurrent Neural Network (RNN) solves the constrained optimisation problem, providing optimal velocities. Moreover, an interpolation-based approach has been introduced to augment the region of attraction. The algorithm ensures stability in the presence of bounded disturbances through the inclusion of free control moves in the control law. The controller efficiency has been evaluated in two scenarios in a hospital setting. The simulation results illustrate that the proposed method performs better than nonlinear MPC and standard LPV-based MPC in terms of computational cost, disturbance rejection, and region of attraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.