Abstract
The detection of targets with complex backgrounds in aerial images is a challenging task. In this letter, we propose a robust insulator detection algorithm based on local features and spatial orders for aerial images. First, we detect local features and introduce a multiscale and multifeature descriptor to represent the local features. Then, we get several spatial orders features by training these local features, it improves the robustness of the algorithm. Finally, through a coarse-to-fine matching strategy, we eliminate background noise and determine the region of insulators. We test our method on a diverse aerial image set. The experimental results demonstrate the precision and robustness of our detection method, and indicate the possible use of our method in practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.