Abstract

The paper proposes a robust image encryption scheme based on chaotic system and elliptic curve over a finite field. The sender and receiver agree on an elliptic curve point based on Diffie-Hellman public key sharing technique. The logistic map is used to generate a chaotic sequence with initial conditions derived from the shared elliptic curve point. The chaotic sequence is converted to integers and the point multiplication is performed with the shared elliptic curve point. The resulting elliptic curve points are converted to byte values to generate a random sequence. The image to be encrypted is scrambled using Arnold’s transform where the number of scrambling rounds is derived from the shared elliptic curve point. The scrambled image pixels value is XOR with the random sequence to generate the cipher image. Statistical, performance, security and robustness analyses show that the proposed scheme is a robust encryption scheme with the ability to resist from different types of attacks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call