Abstract

In this paper, a simple and robust constitutive model is proposed to simulate mechanical behaviors of hyper-elastic materials under bi-axial normal-shear loadings in the finite strain regime. The Mooney–Rivlin strain energy function is adopted to develop a two-dimensional (2D) normal-shear constitutive model within the framework of continuum mechanics. A motion field is first proposed for combined normal and shear deformations. The deformation gradient of the proposed field is calculated and then substituted into right Cauchy–Green deformation tensor. Constitutive equations are then derived for normal and shear deformations. They are two explicit coupled equations with high-level polynomial non-linearity. In order to examine capabilities of the developed hyper-elastic model, uniaxial tensile responses and non-linear stability behaviors of moderately thick straight and curved beams undergoing normal axial and transverse shear deformations are simulated and compared with experiments. Fused deposition modeling technique as a 3D printing technology is implemented to fabricate hyper-elastic beam structures from soft poly-lactic acid filaments. The printed specimens are tested under tensile/compressive in-plane and compressive out-of-plane forces. A finite element formulation along with the Newton–Raphson and Riks techniques is also developed to trace non-linear equilibrium path of beam structures in large defamation regimes. It is shown that the model is capable of predicting non-linear equilibrium characteristics of hyper-elastic straight and curved beams. It is found that the modeling of shear deformation and finite strain is essential toward an accurate prediction of the non-linear equilibrium responses of moderately thick hyper-elastic beams. Due to simplicity and accuracy, the model can serve in the future studies dealing with the analysis of hyper-elastic structures in which two normal and shear stress components are dominant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.