Abstract

In today’s world, Brain Tumor diagnosis plays a significant role in the field of Oncology. The earlier identification of brain tumors increases the compatibility of treatment of patients and offers an efficient diagnostic recommendation from medical practitioners. Nevertheless, accurate segmentation and feature extraction are the vital challenges in brain tumor diagnosis where the handling of higher resolution images increases the processing time of existing classifiers. In this paper, a new robust weighted hybrid fusion classifier has been proposed to identify and classify the tumefaction in the brain which is of the hybridized form of SVM, NB, and KNN (SNK) classifiers. Primarily, the proposed methodology initiates the preprocessing technique such as adaptive fuzzy filtration and skull stripping in order to remove the noises as well as unwanted regions. Subsequently, an automated hybrid segmentation strategy can be carried out to acquire the initial segmentation results, and then their outcomes are compiled together using fusion rules to accurately localize the tumor region. Finally, a Hybrid SNK classifier is implemented in the proposed methodology for categorizing the type of tumefaction in the brain. The hybrid classifier has been compared with the existing state-of-the-art classifier which shows a higher accuracy result of 99.18% while distinguishing the benign and malignant tumors from brain Magnetic Resonance (MR) images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call