Abstract
This paper presents an improved understanding of the interaction of hybrid optimization method with variable low-thrust trajectory optimization requirements. To analyze fuel-optimal bang-bang control problem, a new version of homotopic algorithm, termed robust homotopic method, is investigated with the prospect of improving the efficiency and automation of the homotopic approach to achieve a high-level of robustness, and consequently enlarge its range of application. Such desired characteristics are promoted via a combination of several techniques. As an effective approach, a modified methodology of the switching detection process is presented for the bang-bang optimal-control problem. Moreover, the value of unknown costates and switching functions are mapped to new normalized intervals throughout the computational process. As a result, the optimal solution is rapidly designed to obtain the global robust-convergence to satisfy all constraints without any ambiguity. The fitting process of all iterations robustly find the unknown variables with the percent of converged solutions to maximum, and the penalty terms are quickly satisfied with predetermined high-accuracy, from the energy-optimal to the fuel-optimal solution, especially close to zero point as a critical point. Accordingly, two advanced interplanetary trajectories are optimized using two dynamic modeling approaches for the instantaneous and constant maximal thrust magnitude as a way to analyze and substantiate the robustness of the proposed algorithm. Results and performances are compared with existing solutions of the same mission problem.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.