Abstract

To target the low conductance and expansion issues of Si based anodes for Li-ion batteries, a 3D structural composite constructed by CNTs framework distributedly anchored with double-carbon coated silicon nanoparticles has been designed, fabricated and characterized. The crosslinked CNT framework provided electrical conductive pathway as well as void-space to accommodate the expansion of silicon nanoparticles. The double layered carbon coating was formed under the assistance of the sulfur sacrificing agent giving protection on the silicon particle surface. The Si/CNTs@(S)-C electrodes exhibited a high reversible capacity of 943 mAhg−1 after 1000 cycles at a C/5 rate. The excellent cycling performance is attributed to the unique structure which can stabilize the silicon particle during volume expansion and keep the electrical connection at the same time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.