Abstract

Numerous catalytic reaction systems take oxygen vacancy as the active site to initiate the redox cycle. However, the oxygen vacancy is easily occupied by various oxygen-containing species (e.g., water or other intermediates), resulting in catalyst deactivation. Here, we demonstrate that the layered double hydroxide (LDH) catalysts fundamentally solve the deactivation of oxygen vacancy frequently encountered with metal oxide catalyst systems, which simultaneously realizes the superior reactivity and durability for catalyzing ozone decomposition. First-principles calculations reveal that the ubiquitous surface hydroxyls on the layered hydroxide serve as the reactive sites and the redox cycle is achieved by a robust H-transfer mechanism in the 2D confined LDH systems, which are responsible for the extraordinary activity and resistance of LDH catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call