Abstract

This paper presents a robust H∞ control technique for an islanded microgrid in the presence of sudden changes in load conditions. The proposed microgrid scheme consists of a parallel connected inverter with distributed generations. When the load is suddenly changed the frequency deviates from its nominal value. The objective is to design a robust frequency droop controller in order to achieve the frequency at nominal values without using any secondary controller and communication systems while improving power sharing accuracy. Small signal modeling of the power system is designed for the formulation of the problem and the H∞ optimal linear matrix inequality technique is applied in order to achieve the objectives. The proposed controller has been tested with the MATLAB/ SimPowerSytem toolbox.

Highlights

  • Muhammad Asad Substation Automation EngineerAbstract-This paper presents a robust H∞ control technique for an islanded microgrid in the presence of sudden changes in load conditions

  • Conventional power systems change as a consequence of the rising fuel cost and global warming

  • Frequency deviations occur when the MG is operated in islanded mode since frequency is dependent on the connected load

Read more

Summary

Muhammad Asad Substation Automation Engineer

Abstract-This paper presents a robust H∞ control technique for an islanded microgrid in the presence of sudden changes in load conditions. The proposed microgrid scheme consists of a parallel connected inverter with distributed generations. When the load is suddenly changed the frequency deviates from its nominal value. The objective is to design a robust frequency droop controller in order to achieve the frequency at nominal values without using any secondary controller and communication systems while improving power sharing accuracy. Small signal modeling of the power system is designed for the formulation of the problem and the H∞ optimal linear matrix inequality technique is applied in order to achieve the objectives. The proposed controller has been tested with the MATLAB/ SimPowerSytem toolbox

INTRODUCTION
Direct transf
Augmented Plant
CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.