Abstract
ABSTRACTA hybrid-mixed, four-node, quadrilateral element for the three-dimensional (3D) stress analysis of functionally graded (FG) plates using the method of sampling surfaces (SaS) is developed. The SaS formulation is based on choosing an inside the plate body N, not equally spaced SaS parallel to the middle surface, in order to introduce the displacements of these surfaces as basic plate variables. Such a choice of unknowns, with the consequent use of Lagrange polynomials of the degree N − 1 in the assumed distributions of displacements, strains, and mechanical properties through the thickness leads to a robust FG plate formulation. All SaS are located at Chebyshev polynomial nodes that permit one to minimize uniformly the error due to the Lagrange interpolation. To avoid shear locking and spurious zero-energy modes, the assumed natural strain method is employed. The proposed four-node quadrilateral element passes 3D patch tests for FG plates and exhibits a superior performance in the case of coarse distorted meshes. It can be useful for the 3D stress analysis of thin and thick metal/ceramic plates because the SaS formulation gives an opportunity to obtain the solutions with a prescribed accuracy, which asymptotically approach the 3D exact solutions of elasticity as the number of SaS tends to infinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.