Abstract

Abstract A robust finite element method is introduced for solving elastic vibration problems in two dimensions. The temporal discretization is carried out using the P 1 {P_{1}} -continuous discontinuous Galerkin (CDG) method, while the spatial discretization is based on the Crouziex–Raviart (CR) element. It is shown after a technical derivation that the error of the displacement (resp. velocity) in the energy norm (resp. L 2 {L^{2}} norm) is bounded by O ⁢ ( h + k ) {O(h+k)} (resp. O ⁢ ( h 2 + k ) {O(h^{2}+k)} ), where h and k denote the mesh sizes of the subdivisions in space and time, respectively. Under some regularity assumptions on the exact solution, the error bound is independent of the Lamé coefficients of the elastic material under discussion. A series of numerical results are offered to illustrate numerical performance of the proposed method and some other fully discrete methods for comparison.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.