Abstract

This paper proposes a new robust field-weakening approach for reluctance synchronous motors regulated by direct torque and flux control. Compared to the existing direct torque and flux control based field-weakening methods that cannot achieve maximized DC-link voltage utilization and are parameter dependent, the proposed approach contributes to improve the field-weakening performance of reluctance synchronous motor in two aspects. First, it extends the constant power speed range through autonomous stator flux reference adjustment, which maximizes the dc-link voltage utilization. Smooth transition between the maximum torque per ampere trajectory and field-weakening trajectory is also realized. Second, it enhances the parameter robustness of drives in very high-speed region by employing a torque reference adjustment scheme. This effectively avoids the instability of drives caused by machine parameter variations. The proposed approach is verified experimentally on a laboratory setup.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.