Abstract

This paper investigates an algorithm for robust fault diagnosis (FD) in uncertain robotic systems by using a neural sliding mode (NSM) based observer strategy. A step by step design procedure will be discussed to determine the accuracy of fault estimation. First, an uncertainty observer is designed to estimate the uncertainties based on a first neural network (NN1). Then, based on the estimated uncertainties, a fault diagnosis scheme will be designed by using a NSM observer which consists of both a second neural network (NN2) and a second order sliding mode (SOSM), connected serially. This type of observer scheme can reduce the chattering of sliding mode (SM) and guarantee finite time convergence of the neural network (NN). The obtained fault estimations are used for fault isolation as well as fault accommodation to self-correct the failure systems. The computer simulation results for a PUMA560 robot are shown to verify the effectiveness of the proposed strategy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.