Abstract

This paper presents an energy management system with reduced energy consumption as well as to look for alternative sources of energy which are cheaper to minimize the total cost of energy consumption. A cluster of interconnected price-responsive demands (e.g., a college campus) that is supplied by the main grid and a stochastic distributed energy resources (DER) e.g., a wind and solar power plants with energy storage facilities is considered. An energy management system (EMS) arranges the value responsive requests inside of the bunch and gives the interface to vitality exchanging between the requests and the suppliers, primary lattice and DER. Vitality administration calculation permits the bunch of requests to purchase, store and offer vitality at suitable times. To solve this EMS problem, an optimization algorithm base on linear programming (LP) approach has been implemented. Toward estimate the performance of the planned algorithm an IEEE 14 bus system was consider. The outcome show with the purpose of the group of load of energy management system with the planned approach increases the effectiveness by minimizing the losses while compared to existing method. Improvement in the method is the optimization problem having two sources vulnerability identified with both the generation level of the DER and the cost of the vitality acquired from/sold to the fundamental network, which is demonstrated utilizing robust optimization (RO) procedures. Shrewd grid (SG) innovation is utilized to acknowledge 2-route correspondence between the EMS and the primary lattice and between the EMS and DER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call