Abstract

In this paper, a new robust deterministic annealing (RDA) clustering algorithm is proposed. This method takes advantages of conventional noise clustering (NC) and deterministic annealing (DA) algorithms in terms of independence of data initialization, ability to avoid poor local optima, better performance for unbalanced data, and robustness against noise. The superiority of the proposed RDA clustering algorithm is supported by simulation results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.