Abstract

Recently, a novel detector was proposed by the authors for code acquisition in non-Gaussian impulsive channels [3], which dramatically outperforms the conventional squared-sum detector; however, it requires exact knowledge of the non-Gaussian noise dispersion. In this paper, a robust detector is proposed, which employs the signs and ranks of the received signal samples, instead of their actual values, and so does not require knowledge of the non-Gaussian noise dispersion. The acquisition performance of the proposed detector is compared with that of the detector of [3] in terms of the mean acquisition time. The simulation results show that the proposed scheme is not only robust to deviations from the true value of the non-Gaussian noise dispersion, but also has comparable performance to that of the scheme of [3] using exact knowledge of the non-Gaussian noise dispersion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call