Abstract
In the robust design, correlations of uncertain parameters exist widely and have an influence on the results in most cases. It is essential to develop a robust design optimization method considering parametric correlation to future improve the analysis accuracy and engineering applicability. In this paper, a robust design optimization method based on multidimensional parallelepiped convex model is presented. Considering the effects of the interval uncertainties and their correlations, a robust design optimization model considering correlated intervals is established. In the established model, the average performance and robustness of the system response of concern are taken as the design optimization objectives, and the correlations among interval parameters are quantified by integrating the multidimensional parallelepiped convex model. And then, through an independence transforming procedure it can be converted into an independent interval model, which is ultimately converted into a deterministic multi-objective optimization model by using the interval possibility degree to cope with the uncertain constraints. Finally, the deterministic multi-objective optimization model is treated by coupling an efficient micro multi-objective genetic algorithm with the first order Taylor expansion. The feasibility and practicability of the proposed method are demonstrated by the numerical and engineering examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.