Abstract

SummaryThis article documents a cut‐cell finite element method for solving Poisson's equation in smooth three‐dimensional domains using a uniform, Cartesian axis‐aligned grid. Neumann boundary conditions are imposed weakly by way of a Delaunay triangulation, while Dirichlet boundary conditions are imposed strongly using a projection method. A set of numerical simulations demonstrates the proposed method is robust and preserves the asymptotic rate of convergence expected of corresponding body‐fitted methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.