Abstract
In order to identify genes involved in complex diseases, it is crucial to study the genetic interactions at the systems biology level. By utilizing modern high throughput microarray technology, it has become feasible to obtain gene expressions data and turn it into knowledge that explains the regulatory behavior of genes. In this study, an unsupervised nonlinear model was proposed to infer gene regulatory networks on a genome-wide scale. The proposed model consists of two components, a robust correlation estimator and a nonlinear recurrent model. The robust correlation estimator was used to initialize the parameters of the nonlinear recurrent curve-fitting model. Then the initialized model was used to fit the microarray data. The model was used to simulate the underlying nonlinear regulatory mechanisms in biological organisms. The proposed algorithm was applied to infer the regulatory mechanisms of the general network in Saccharomyces cerevisiae and the pulmonary disease pathways in Homo sapiens. The proposed algorithm requires no prior biological knowledge to predict linkages between genes. The prediction results were checked against true positive links obtained from the YEASTRACT database, the TRANSFAC database, and the KEGG database. By checking the results with known interactions, we showed that the proposed algorithm could determine some meaningful pathways, many of which are supported by the existing literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.