Abstract
Correlation analysis is one of the fundamental mathematical tools for identifying dependence between classes. However, the accuracy of the analysis could be jeopardized due to variance error in the data set. This paper provides a mathematical analysis of the impact of imbalanced data concerning Pearson Product Moment Correlation (PPMC) analysis. To alleviate this issue, the novel framework Robust Correlation Analysis Framework (RCAF) is proposed to improve the correlation analysis accuracy. A review of the issues due to imbalanced data and data uncertainty in machine learning is given. The proposed framework is tested with in-depth analysis of real-life solar irradiance and weather condition data from Johannesburg, South Africa. Additionally, comparisons of correlation analysis with prominent sampling techniques, i.e., Synthetic Minority Over-Sampling Technique (SMOTE) and Adaptive Synthetic (ADASYN) sampling techniques are conducted. Finally, K-Means and Wards Agglomerative hierarchical clustering are performed to study the correlation results. Compared to the traditional PPMC, RCAF can reduce the standard deviation of the correlation coefficient under imbalanced data in the range of 32.5%–93.02%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.