Abstract

This work presents a solution to the output feedback trajectory tracking problem for an uncertain DC motor pendulum system under the effect of an unknown bounded disturbance. The proposed algorithm uses a Proportional Derivative (PD) controller plus a novel on-line estimator of the unknown disturbance. The disturbance estimator is obtained by coupling a standard second-order Luenberger observer with a third-order sliding modes differentiator. The Luenberger observer provides estimates of the motor angular position and velocity. Moreover, an ideal disturbance estimator in terms of the Luenberger observer error and its first and second time derivatives is obtained from the observer error formulae; these time derivatives are not available from measurements. Subsequently, the sliding modes third-order differentiator allows obtaining estimates of these time derivatives in finite time. The estimates replace the real values of the first and second time derivatives in the ideal disturbance estimator thus producing a practical disturbance estimator, and also permit obtaining an estimate of the motor angular velocity. A depart from previous approaches is the fact that the disturbance is not directly estimated by the Luenberger observer or the third-order differentiator. Numerical simulations and real-time experiments validate the effectiveness of the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call