Abstract

A battery energy storage system (BESS) can play a critical role in regulating system frequency and voltage in an islanded microgrid. A <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mu$</tex-math></inline-formula> -synthesis-based robust control has been proposed for dc link voltage regulation of BESS for achieving frequency regulation and voltage quality enhancement of islanded microgrid. Variation in the operating condition of ac microgrid affects the operating condition of the BESS’ converter. This controller synthesis accounts for such uncertain variations as parametric uncertainty. The stability and performance of the proposed controller can be guaranteed for bounded parametric variations. The bounds on parameters are selected based on practical limitations of BESS. In this article, the proposed controller's performance is tested on an islanded CIGRE TF C6:04:02 benchmark low voltage ac microgrid system. The importance of dc link voltage regulation is analyzed based on performance comparison with a benchmark controller. The controller performance is also validated using a real-time Typhoon HIL emulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.