Abstract

In general, the position control of electro hydrostatic actuator(EHA) systems is difficult because of the large variation of the effective bulk modulus of the working fluid, which is due to the absence of a heat exchanger like a reservoir tank, the friction between the cylinder and piston, and the external disturbance force. Moreover, it is difficult to identify the values of the effective bulk modulus and friction. In this paper, the variation of the effective bulk modulus, friction, and external disturbance are considered as uncertainties of EHA systems. To solve the problems due to these system uncertainties, an adaptive back-stepping control scheme with fuzzy neural networks(FNNs) is proposed. The effectiveness of the adaptive back-stepping control(ABSC) system with FNNs was compared with those of the standard back-stepping control(BSC) system and the ABSC system through computer simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.