Abstract
In this paper, a robust controller for the positioning of a piezoelectric tube scanner (PTS) used in an atomic force microscope (AFM) is proposed. A minimax linear quadratic Gaussian (LQG) controller is designed based on an uncertain system model which is constructed by measuring modeling error between the measured and model frequency response. This controller is robust against uncertainties introduced as a result of spillover dynamics of the scanner at frequencies higher than the first resonance frequency (900 Hz) of the scanner and the variation of plant transfer function due to temperature, humidity, and duration of operation. The proposed controller is applied to the PTS in the AFM used in the experiments to evaluate the performance of the proposed method. It is observed that the proposed scheme provides up to 12 dB closed-loop damping of the resonant mode to track the reference triangular signal. The robust performance of the proposed controller has been investigated for 0–1.96 g sample mass variation. A high positioning accuracy up to 125 Hz frequency is achieved by reducing scanner's vibration and tracking error. Higher-quality imaging up to 125 Hz scanning frequency is achieved compared to the existing PI controller and some other existing methods. This control technique may be applied to control vibration for the systems with changing frequency response due to uncertainties, such as vibration control of disc-drive system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.