Abstract

Mendelian randomization (MR) uses genetic variants as instrumental variables (IVs) to investigate causal relationships between traits. Unlike conventional MR, cis-MR focuses on a single genomic region using only cis-SNPs. For example, using cis-pQTLs for a protein as exposure for a disease opens a cost-effective path for drug target discovery. However, few methods effectively handle pleiotropy and linkage disequilibrium (LD) of cis-SNPs. Here, we propose cisMR-cML, a method based on constrained maximum likelihood, robust to IV assumption violations with strong theoretical support. We further clarify the severe but largely neglected consequences of the current practice of modeling marginal, instead of conditional genetic effects, and only using exposure-associated SNPs in cis-MR analysis. Numerical studies demonstrated our method’s superiority over other existing methods. In a drug-target analysis for coronary artery disease (CAD), including a proteome-wide application, we identified three potential drug targets, PCSK9, COLEC11 and FGFR1 for CAD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.