Abstract

Herein, an asymmetric diatomic site oxygen reduction reaction (ORR) electrocatalyst with atomically dispersed Fe and Cu species co-anchored on porous nitrogen-doped polyhedra carbon was successfully prepared through a facile cooperation of post-adsorption and two-step pyrolysis method. Density functional theory (DFT) calculations reveal that the asymmetric FeCu dual atomic site experiences a symmetry destruction of electron transfer due to the existing Cu-N4 sites and thus results in the electron redistribution in FeSACuSA/NC, contributing significantly to the optimization of intermediates adsorption and acceleration of kinetics during ORR process. Attributed to the structural advantages of FeSA-N4&CuSA-N4 sites and highly porous carbon matrix, the FeSACuSA/NC catalyst exhibits excellent electrocatalytic ORR performance with half-wave potentials (E1/2) of 0.86 and 0.88 V versus reversible hydrogen electrode in 0.1 M HClO4 and 0.1 M KOH solutions as well as high durability. Moreover, FeSACuSA/NC-based H2/O2 fuel cell and zinc-air battery present superior performance with high peak power density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call