Abstract

Rapid urbanization across the world has led to an exponential increase in demand for utilities, electricity, gas and water. The building infrastructure sector is one of the largest global consumers of electricity and thereby one of the largest emitters of greenhouse gas emissions. Reducing building energy consumption directly contributes to achieving energy sustainability, emissions reduction, and addressing the challenges of a warming planet, while also supporting the rapid urbanization of human society. Energy Conservation Measures (ECM) that are digitalized using advanced sensor technologies are a formal approach that is widely adopted to reduce the energy consumption of building infrastructure. Measurement and Verification (M&V) protocols are a repeatable and transparent methodology to evaluate and formally report on energy savings. As savings cannot be directly measured, they are determined by comparing pre-retrofit and post-retrofit usage of an ECM initiative. Given the computational nature of M&V, artificial intelligence (AI) algorithms can be leveraged to improve the accuracy, efficiency, and consistency of M&V protocols. However, AI has been limited to a singular performance metric based on default parameters in recent M&V research. In this paper, we address this gap by proposing a comprehensive AI approach for M&V protocols in energy-efficient infrastructure. The novelty of the framework lies in its use of all relevant data (pre and post-ECM) to build robust and explainable predictive AI models for energy savings estimation. The framework was implemented and evaluated in a multi-campus tertiary education institution setting, comprising 200 buildings of diverse sensor technologies and operational functions. The results of this empirical evaluation confirm the validity and contribution of the proposed framework for robust and explainable M&V for energy-efficient building infrastructure and net zero carbon emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.