Abstract

Airport gate assignment (AGA) is a critical issue for airport operations management. It aims to assign flights to gates according to their arrival and departure times. To tackle flight delays in airports, we propose a robust airport gate assignment (RAGA) to minimize the (1−α)-quantile of the total real-time overlap between consecutive flights at the same gate, namely, the total gate blockage time, so that the realized total gate blockage time is worse than its quantile with a probability, at most α. Given any constant, we develop an asymptotically tight upper bound for the violation probability that total gate blockage time is worse than the constant. Based on the upper bound, a solution-dependent uncertainty budget is introduced to develop a robust counterpart (RCP) for the RAGA. We further develop a solution technique for the RCP by transforming the problem into a finite number of tractable binary programmings. An empirical study of the Shuangliu International Airport (CTU) indicates that our proposed robust approach for AGA outperforms existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.