Abstract

The Helmholtz equation plays a crucial role in the study of wave propagation, underwater acoustics, and the behavior of waves in the ocean environment. The Helmholtz equation is also used to describe propagation through ocean waves, such as sound waves or electromagnetic waves. This paper presents the Elzaki transform residual power series method (E\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {E}}$$\\end{document}T-RPSM) for the analytical treatment of fractional-order Helmholtz equation. To develop this scheme, we combine Elzaki transform (E\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {E}}$$\\end{document}T) with residual power series method (RPSM). The fractional derivatives are described in Caputo sense. The E\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\mathbb {E}}$$\\end{document}T is capable of handling the fractional order and turning the problem into a recurrence form, which is the novelty of our paper. We implement RPSM in such a way that this recurrence relation generates the results in the form of an iterative series. Two numerical applications are considered to demonstrate the efficiency and authenticity of this scheme. The obtained series are determined very quickly and converge to the exact solution only after a few iterations. Graphical plots and absolute error are shown to observe the authenticity of this suggested approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.