Abstract
A Robust Anti-Windup Control (RAWC) method is proposed for n-Degree-of-Freedom (DOF) electrically driven robots considering the actuator voltage saturation. The actuator’s saturation is fairly modeled by a smooth nonlinear function and the control design task is developed to avoid windup besides being robust against both model uncertainties and external disturbances. As a major point, the paper also takes into consideration the fact that windup phenomenon can be caused by some strong disturbances. As a result, being robust to external disturbances promises safer situation against windup. The proposed controller needs no saturation output feedback and torque’s measurement for control implementation. The analytical studies as well as the experimental results produced using MATLAB/SIMULINK External Mode Control on a 2-DOF robot manipulator driven by geared Permanent magnet DC motors prove the superiority of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Control, Automation and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.