Abstract

Intelligent hydrogels are promising for biomimetic actuators, but acquiring actuations with both high speed and powerful force is still extremely difficult. Herein, a new robust polypyrrole (PPy)-coated copoly(isopropylacrylamide-4-benzoylphenyl acrylate) [P(NIPAM-ABP)] electrospun light-responsive hydrogel is explored. The (PPy)-coated P(NIPAM-ABP) hydrogel can be obtained via in-situ polymerization of pyrroles on the nanofiber-oriented electrospun P(NIPAM-ABP) hydrogel. Compared with original P(NIPAM-ABP) hydrogel, this PPy-coated P(NIPAM-ABP) hydrogel can integrate highly-enhanced mechanical strength (from 1.21 to 5.12 MPa of tensile strength) and ultrahigh-efficiency of photothermal conversion together. In addition, the orientation of P(NIPAM-ABP) nanofibers can still maintain well for programmable complex deformations. Consequently, the as-prepared robust bi-hydrogel actuator with ultrafast and complex deformations has been achieved, through bonding the PPy-P(NIPAM-ABP) hydrogel membrane with a polyethylene glycol diacrylate-cellulose nanofiber (PEGDA-CNF) composite hydrogel membrane via interfacial ultraviolet (UV) polymerization of PEGDA monomers. Several light-responsive biomimetic actuating devices have been achieved, which owning powerful force (can grab up 100 times of self-weight), rapid speed (1285.71°/s of folding) or precisely programmable complex deformations. Furthermore, two biomimetic devices with synergistic functions of the three advantages above have been explored, which can mimic the child’s sit-up and the starfish’s continuous crawling movement respectively. This work provides a robust remotely-controlled light-responsive hydrogel actuator with powerful force, ultrafast speed and programmable complex actuations, which will inspire the design and fabrication of novel soft biomimetic actuating materials and systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.