Abstract

The fractional differential quadrature method (FDQM) with generalized Caputo derivatives is used in this paper to show a new numerical way to solve fractional Riccati equations and fractional Lorenz systems. Unlike previous FDQM applications that have primarily focused on linear problems, our work pioneers the use of this method for nonlinear fractional initial value problems. By combining Lagrange interpolation polynomials and discrete singular convolution (DSC) shape functions with the generalized Caputo operator, we effectively transform nonlinear fractional equations into algebraic systems. An iterative method is then utilized to address the nonlinearity. Our numerical results, obtained using MATLAB, demonstrate the exceptional accuracy and efficiency of this approach, with convergence rates reaching 10−8. Comparative analysis with existing methods highlights the superior performance of the DSC shape function in terms of accuracy, convergence speed, and reliability. Our results highlight the versatility of our approach in tackling a wider variety of intricate nonlinear fractional differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.