Abstract
Purpose The aim of this study is to create a robust and simple collision avoidance approach based on quaternion algebra for vision-based pick and place applications in manufacturing industries, specifically for use with industrial robots and collaborative robots (cobots). Design/methodology/approach In this study, an approach based on quaternion algebra is developed to prevent any collision or breakdown during the movements of industrial robots or cobots in vision system included pick and place applications. The algorithm, integrated into the control system, checks for collisions before the robot moves its end effector to the target position during the process flow. In addition, a hand–eye calibration method is presented to easily calibrate the camera and define the geometric relationships between the camera and the robot coordinate systems. Findings This approach, specifically designed for vision-based robot/cobot applications, can be used by developers and robot integrator companies to significantly reduce application costs and the project timeline of the pick and place robotics system installation. Furthermore, the approach ensures a safe, robust and highly efficient application for robotics vision applications across all industries, making it an ideal solution for various industries. Originality/value The algorithm for this approach, which can be operated in a robot controller or a programmable logic controller, has been tested as real-time in vision-based robotics applications. It can be applied to both existing and new vision-based pick and place projects with industrial robots or collaborative robots with minimal effort, making it a cost-effective and efficient solution for various industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Industrial Robot: the international journal of robotics research and application
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.