Abstract

In this article, we discuss the development of prognostic machine learning (ML) models for COVID-19 progression, by focusing on the task of predicting ICU admission within (any of) the next 5 days. On the basis of 6,625 complete blood count (CBC) tests from 1,004 patients, of which 18% were admitted to intensive care unit (ICU), we created four ML models, by adopting a robust development procedure which was designed to minimize risks of bias and over-fitting, according to reference guidelines. The best model, a support vector machine, had an AUC of .85, a Brier score of .14, and a standardized net benefit of .69: these scores indicate that the model performed well over a variety of prediction criteria. We also conducted an interpretability study to back up our findings, showing that the data on which the developed model is based is consistent with the current medical literature. This also demonstrates that CBC data and ML methods can be used to predict COVID-19 patients’ ICU admission at a relatively low cost: in particular, since CBC data can be quickly obtained by means of routine blood exams, our models could be used in resource-constrained settings and provide health practitioners with rapid and reliable indications.Graphical abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.