Abstract

Graph embedding is essential for graph mining tasks. With the prevalence of graph data in real-world applications, many methods have been proposed in recent years to learn high-quality graph embedding for various types of graphs, among which the Generative Adversarial Networks (GAN) based methods attract increasing attention among researchers. However, most GAN-based generator-discriminator frameworks randomly generate the negative samples from the original graph distributions to enhance the training process of the discriminator without considering the noise. In addition, most of these methods only focus on the explicit graph structures and cannot fully capture complex semantics of edges such as various relationships or asymmetry. In order to address these issues, we propose a robust and generalized framework named AGE. It generates fake neighbors as the enhanced negative samples from the implicit distribution, and enables the discriminator and generator to jointly learn robust and generalized node representations. Based on this framework, we propose three models to handle three types of graph data and derive the corresponding optimization algorithms, namely the UG-AGE and DG-AGE for undirected and directed homogeneous graphs, respectively, and the HIN-AGE for heterogeneous information networks. Extensive experiments show that our methods consistently and significantly outperform existing state-of-the-art methods across multiple graph mining tasks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.